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superoxide produces singlet oxygen (1Ag).18 '19 Exciplex 
structures involving less complete charge transfer could also 
be used to rationalize the behavior. 

Singlet oxygen has been hypothesized to oxidize Fe2 + in 0.8 
N H2SO4

2 0 as well as pH 5 HClO4 .21 In the latter case, oxi­
dation efficiency was found to increase with pH in contrast to 
the results here. The extent of involvement of singlet oxygen 
in our system, if any, must await more precise data correlating 
3 formation with measured yields of Fe3 + . Similarly, more 
detailed investigation might reveal that oxidants other than 
singlet oxygen were involved in the earlier studies since the 
proposed mechanisms were based on reasonable inference 
rather than rigorous proof. 
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A Novel Rearrangement of Angularly Fused 
Cyclobutanone. Stereospecific Syntheses of 
Intermediates to the 
Diterpene Alkaloids and the C 2 0 Gibberellins1 

Sir: 

Recently we have developed2 a simple efficient synthetic 
route to a few angularly fused polycyclic cyclobutanones 3a,b 
and 4a,b through intramolecular C-alkylations of the easily 
accessible /3,7-unsaturated diazomethyl ketones la,b and 2a,b 
and their stereocontrolled hydrogenation to the saturated cy­
clobutanones 5a,b and 6a,b. We now report a remarkable 
stereospecific rearrangement of these saturated cyclobutanones 
to the respective bridged ketones 7a,b and 8a,b. The importance 
of 7b relating to the synthesis of Garrya and Atisine groups 
of the diterpene alkaloids and the C2o-gibberellins has already 
been established.3 We also report here the transformations of 
the tetracyclic ketones 8a and 8b to some key hydrofluorene 
synthons 9a and 9b towards the C2o-gibberellins.4 

Scheme I 

Thus, treatment of the strained5 cyclobutanone 5a with an 
excess (20-25 mole equiv) of triethyloxonium fluoborate6 in 
anhydrous methylene chloride under dry nitrogen for 12-16 
h afforded the known3 bridged-tetracyclic ketone 7a in 90-95% 
isolated yield. The corresponding methoxy analogue 5b under 
the same sequence produced 7b3 in 90% yield. The intramo­
lecular nature of this rearrangement has been established from 
the results of the reaction of 5a-4,4a-d2

7 with triethyloxonium 
fluoborate, which showed a pronounced isotope effect and 
required ca. 6 days at room temperature for complete con­
version of the cyclobutanone to the cyclopentanone (monitored 
by ir). The rearranged ketone 7a,8 isolated in 85% yield, 
showed >99% of <f 2 in the mass spectrum. 

It may be mentioned that the reaction of the cyclobutanone 
5a with concentrated H2SO4 in benzene at ice-salt bath tem­
perature (ca. —10 to —5°) produced the unsaturated methyl 
ketone 11a9 in excellent yield, as has been reported" in a 
similar case. 

The triethyloxonium fluoborate catalyzed rearrangement 
of the major isomer2 6a from the catalytic hydrogenation of 
the unsaturated hydrofluorene ketone 4a12 required somewhat 
longer reaction time (24 h) and afforded the liquid five-
membered bridged ketone 8a13, bp 135-140° (0.3 mm) (bath 
temp) (m/e 226; Kmax 1730 cm"1; 5 (CCl4) 0.70 (3 H, s), 
1.2-3.5 (11 H, complex mm), 7.06 (4 H, s)) in 90-95% yield; 
semicarbazone mp 235-238° dec. The corresponding methoxy 
analogue 6b,14 under identical conditions gave the respective 
rearranged ketone 8b, bp 120-125° (0.1 mm) (bath temp) 

Scheme II 
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(m/e 256; ^max 1730 cm- ' ; S (CCl4) 0.75 (3 H, s), 1.25-3.3 (11 
H complex mm), 3.71 (3 H, s) and 6.57-7.03 (3 H, m)) in 93% 
yield; semicarbazone mp 216-217° dec. Benzylic oxidation15 

of the ketone 8b with CrC>3-HOAc gave the 9-oxo derivative 
13b, mp 83-84° (m/e 270; Xmax

EtOH 222 nm (e 18 900), 252 
(e 5670) and 325 nm (t 1586); vmax 1740 (s), 1715 (s), and 
1615 (m)) which confirmed its assigned structure. Stereo­
chemistry of the saturated cyclobutanones 6a and 6b and the 
respective rearranged ketones 8a and 8b has been assigned 
from their modes of formation in analogy to the respective 
hydrophenanthrene derivatives of established stereochemistry.3 

To exemplify the synthetic usefulness of this rearrangement 
process for the introduction of an angular carboxyl group, we 
briefly record here transformations3 of 8a and 8b to the di-
carboxylic acids 9a, mp 206-207° dec, and 9b mp 212-213° 
dec, and dimethyl esters 10a, bp 123-127° (0.05 mm) (bath 
temp) (j/max 1725 cm"1; 5 (CCl4) 0.90 (3 H, s), 1.38 (1 H, m), 
1.95 (5 h, br s), 2.95 and 3.28 (2 H, partially resolved quartet, 
ABX system, / A B = 13 Hz, J A x = 3 Hz) and signal for 1 H 
masked under these, 3.55 (3 H, s), 3.60 (3 H, s), and 7.08 (4 
H, s)), and 10b, mp 83° (m/e 332; rmax 1720 (s) and 1605 (w); 
8 (CCl4) 0.90 (3 H,s) , 1.31 (1 H, d, 7 = 7 Hz), 1.88 (5 H, br 
s), 2.84 and 3.25 (2 H, partially resolved quartet, ABX system, 
/ A B = 13 Hz, / A x = 2 Hz) and signal for 1 H masked under 
these, 3.5 and 3.56 (6 H, 2s), 3.68 (3 H, s), and 6.46-7.0 (3 H, 
m)) in 60-65% yields through the corresponding hydroxy-
methylene (NaH, HCChEt) derivatives, followed by oxidation 
with alkaline hydrogen peroxide. 
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Laser Flash Spectroscopy of 
Tris(2,2'-bipyridine)ruthenium(II) in Solution 

Sir: 

The properties of the excited states of transition metal 
complexes are of great interest since these compounds often 
absorb strongly in the visible and might be used in solar energy-
conversion.1"4 The lowest excited state of Ru(bpy)32+, which 
is commonly considered as a triplet charge transfer excited 
state, (3CT)Ru(bpy)32+ ,5 exhibits very peculiar properties7 

and it has been extensively used in the last few years for both 
energy7,8 and electron2'7-9-16 transfer processes. We report here 
a study of this-excited state by laser flash spectroscopy. 

The experiments were performed at room temperature with 
an apparatus previously described.I7'1S The neodymium laser 
CILAS used for excitation emits in 60-ns pulses of approxi­
mately 1 J at 530 nm and 50 mJ at 353 or 265 nm after dou­
bling, tripling, or quadrupling its normal frequency. For ex­
citation at 530 nm the energy of the pulse was filtered to avoid 
dielectric breakdown and multiphoton effects. Transient op­
tical densities were normalized to correct for variation in ex­
citation intensity. The detection system, which uses an auto­
matic back off already described,19 is able to measure ab-
sorbance values as small as 5 X 1O-4. The samples were 
deaerated by bubbling with Ar. For each laser excitation a 
fresh sample of the solution was used. 

The absorption spectrum obtained immediately after the 
end of the exciting flash was practically identical for water or 
acetonitrile solutions and for 265, 353, or 530 nm excitation. 
A typical spectrum for a solution 4.7 X 10 - 5 in water (Xexc 265 
nm) is shown in Figure 1. The same exponential kinetics was 
observed for (i) the recovery of the bleaching at the maximum 
of the ground state absorption (453 nm), (ii) the decay of the 
transient absorption (360 nm), and (iii) the decay of the 
transient emission (610 nm). For each one of these phenomena 
the first-order rate constant was (1.50 ± 0.05) X 106 s_ 1 in 
water and (0.95 ± 0.05) X 106 s"1 in acetonitrile. The first-
order law was unchanged by varying the Ru(bpy)32+ con­
centration in the range 0.15 X 1O-4 to 6.0 X 1O-4 M. In 
aqueous solution the rate constant was 2.3 X 106 s - ' in the 
presence of air and 4.8 X 106 S - ' in the presence of 1.0 X 10 - 3 

M oxygen, which gives a value of 3.3 X 109 M - 1 s - 1 for the 
bimolecular rate constant of the reaction of the transient with 
oxygen. Excitation of Ru(bpy)32+ solutions in acetonitrile 
containing 1.0 X 10~3 M retinol by a 530-nm pulse (which is 
exclusively absorbed by the ruthenium complex) caused the 
appearance of the characteristic absorption at 405 of the retinol 
triplet.18 The formation of retinol triplet matched the recovery 
of Ru(bpy)3

2 + absorption at 453 nm. The pseudo-first-order 
rate constant was 4.0 X 106 s_1 , which gives a value of 2.5 X 
109 M - 1 s_ 1 for the bimolecular rate constant of the reaction 
between the transient and retinol. 

The results obtained indicate that the transient absorption 
and emission observed are due to the same excited state of 
Ru(bpy)3

2 + . The emission at 610 nm of excited Ru(bpy)3
2+ 

had already been studied and assigned to the so-called triplet 
charge transfer excited state, (3CT)Ru(bpy)3

2 + 5'6-20 The 
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